Abstract

The film structure and H bonding of high deposition rate a-SiGe:H i-layers, deposited by HWCVD and containing ~ 40 at.% Ge, have been investigated using deposition conditions which replicate those used in n–i–p solar cell devices. Increasing the germane source gas depletion in HWCVD causes not only a decrease in solar cell efficiency from 8.64% to less than 7.0%, but also an increase in both the i-layer H preferential attachment ratio (PA) and the film microstructure fraction ( R⁎). Measurements of the XRD medium range order over a wide range of germane depletion indicate that this order is already optimum for the HWCVD i-layers, suggesting that energetic bombardment of a-SiGe:H films may not always be necessary to achieve well ordered films. Preliminary structural comparisons are also made between HWCVD and PECVD device layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.