Abstract

The availability of compact digital circuitry for the support of neural networks is a key requirement for resource-constrained embedded systems. This brief tackles the implementation of single hidden-layer feedforward neural networks, based on hard-limit activation functions, on reconfigurable devices. The resulting design strategy relies on a novel learning procedure that inherits the approach adopted in the Extreme Learning Machine paradigm. The eventual training process balances accuracy and network complexity effectively, thus supporting a digital architecture that prioritizes area utilization over computational performance. Experimental tests confirm that the design approach leads to efficient digital implementations of the predictor on low-performance devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.