Abstract

We present a new method of deriving microstructure-dependent bounds on the effective properties of general heterogeneous media. The microstructure is specified by the average Eshelby tensors. In the small contrast limit, we introduce and calculate the expansion coefficient tensors. We then show that the effective tensor satisfies a differential inequality with the initial condition given by the expansion coefficient tensors in the small contrast limit. Using the comparison theorem, we obtain rigorous bounds on the effective tensors of multiphase composites. These new bounds, taking into account the average Eshelby tensors for homogeneous problems, are much tighter than the microstructure-independent Hashin–Shtrikman bounds. Also, these bounds are applicable to non-well-ordered composites and multifunctional composites. We anticipate that this new approach will be useful for the modeling and optimal design of multiphase multifunctional composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.