Abstract
Schiff bases stand out as a highly significant class of photochromic materials with widespread applications. The exploration of their photochromic mechanisms has garnered substantial interest over the past decades. In this work, we investigated the photochromic mechanism of 3-hydroxy-salicylidene methylamine (3-OH-SMA) by high-level electronic structure calculations and on-the-fly excited state dynamics simulations. Our investigation revealed the identification of three minimum energy conical intersections between S1 and S0 states, while only the one characterized by the central C = N bond twisting motion was involved in the deactivation process. This finding contrasts with previous reports, suggesting that the excited state intramolecular proton transfer (ESIPT) process was the main reaction channel in 3-OH-SMA. The proposed new decay mechanism provides valuable theoretical insights, paving the way for the further enhancement or rational design of photochromic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.