Abstract
The potential H2 adsorption/storage performance of the ZnO monolayer decorated with alkaline or alkaline earth metal atoms was studied using first-principle density functional theory (DFT) calculations. The light metal atom (Li, Na, K, Be, Mg, or Ca) could be atomically dispersed and decorated on the Zn–O hexatomic ring in the ZnO monolayer with high binding energy. Compared to Na-, K-, Be-, Mg-, or Ca-decorated ZnO, Li-decorated ZnO exhibited significantly stronger interactions with H2, resulting in higher adsorption energy, more transferred charges, and stronger orbital hybridizations. On the ZnO decorated with a single Li atom, four H2 molecules could be stored with an average adsorption energy of −0.242 eV. By increasing the two-sided Li coverage to one, three H2 molecules could still be stored on each decorated Li due to space limitations, with an acceptable average adsorption energy of −0.216 eV. As a result, the hydrogen storage capacity of the Li-decorated ZnO monolayer could be successfully and reasonably improved to 6.92 wt%. This study suggests that fully lithiated ZnO may have promising potential as an adsorbent for outstanding hydrogen storage performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.