Abstract

The article presents a detection system with spider web coil-based wireless charging. Commonly available metal detectors are sold as handheld systems, which enable only progressive, lengthy, time-consuming search. Importantly, a part of the investigated area can thus be easily missed, and the probability that a metal object will not be found increases substantially. This problem, however, is eliminable via the automatic position tracking mode embedded in the solution obtained through our research. The proposed system facilitates using the spider web coil simultaneously for wireless charging and metal detection by pulse induction. The topology of the detector can emit variable pulse lengths, thus allowing the device to detect more types of metal and to adapt itself to the permeability of the soil. The coil has a branch in a relevant part of the winding to reduce undesirable electromagnetic interference during the charging. On the transmitting side of the topology, impedance matching is included to maintain the maximum spatial gap variability. By changing the position of the receiving side, the output voltage changes; therefore, a high efficiency DC/DC converter is employed. The individual battery cells demonstrate different internal resistances, requiring us to apply a new method to balance the cells voltage. The system can be utilized on self-guided vehicles or drones; advantageously, a GPS resending the coordinates to a mesh radio allows for accurate positioning. With the mesh topology, potential cooperation between the multiple systems is possible. The setup utilizes the same coil for wireless power transfer and detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.