Abstract
There is active interest in the development of algorithms for detecting weak stationary optical and IR targets in a heavy opticalclutter background. Often only poor detectability of low signal-to-noise ratio (SNR) targets is achieved when the direct correlation method is used. In many cases, this is partly obviated by using detection with correlated reference scenes [1, 2].This paper uses the experimentally justified assumption that most optical clutter can be modeled as a whitened Gaussian randomprocess with a rapidly space-varying mean and a more slowlyvarying covariance [2]. With this assumption, a new constant falsealarm rate (CFAR) detector is developed as an application of the classical generalized maximum likelihood ratio test of Neyman and Pearson. The final CFAR test is a dimensionless ratio. This test exhibits the desirable property that its probability of a false alarm(PFA) is independent of the covariance matrix of the actual noiseencountered. When the underlying noise processes are complex intime, similar considerations can yield a sidelobe canceler CFARdetection criterion for radar and communications. Performance analyses based on the probability of detection (PD)versus signal-to-noise ratio for several given fixed false alarm probabilities are presented. Finally these performance curves are validated by computer simulations of the detection process which use real image data with artificially implanted signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.