Abstract

Mathematical models play a crucial role in data acquisition by boosting the capacity to interpret and group the gathered information. However, the challenge lies in choosing the most accurate model to represent data sets with very slight nuances, as it occurs in the validation of adsorption processes considering molecules with different properties but similar structural attributes. Due to these very small variations, there is a high chance of excessive adaption to specific patterns created by the distributions, statistically blindsiding the decision-making. In this work, we used statistical physics (sta-phy) modeling and thermodynamic calculations of the three different pesticides 2,4-dichlorophenoxyacetic acid (2,4-D), dicamba (DCB), and mecoprop (MCPP) on a woody based activated carbon (WBAC) to demonstrate these patterns while also unveiling the mechanisms involved. We demonstrate that the statistical criteria alone do not provide enough clarity in these cases, and we propose using the physical meaning of each estimated parameter as a way out. Thus, in this work, we prove in detail that using sta-phy models requires absolute mastering of the subjects to ensure reliable results by understanding the relationships between the adsorption parameters and the system properties instead of a simple read of the determination coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.