Abstract

The autoignition chemistry of lean n-propylcyclohexane/“air” mixtures ( ϕ = 0.3, 0.4, 0.5) was investigated in a rapid compression machine at compressed gas temperatures ranging from 620 to 930 K and pressures ranging from 0.45 to 1.34 MPa. Cool flame and ignition delay times were measured. Cool flame delay times were found to follow an Arrhenius behavior, and a correlation including pressure and equivalence ratio dependences was deduced. The present ignition delay data were compared with recent experimental results and simulations from the available thermokinetic models in the literature. Negative temperature coefficient zones were observed when plotting ignition delay times versus compressed gas temperature. The oxidation products were identified and quantified during the ignition delay period. Formation pathways for the C 9 bicyclic ethers and conjugate alkenes are proposed. The experimental data provide an extensive database to test detailed thermokinetic oxidation models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.