Abstract

A core-shell structural composite was synthesized with lithium terephthalate (Li2C8H4O4) coated on spinel Li4Ti5O12 (LTO). The composite displays a capacity of about 200mAhg−1 and a good rate capability with two charge/discharge platforms at ~1.55 and ~0.8V. The excellent cycling performance of the composite is attributed to the successful combination of high cycling stability of LTO and high specific capacity of Li2C8H4O4. In addition, an interesting phenomena is observed for the first time for this composite which is that lithium ions transfer between LTO and Li2C8H4O4 at a fast speed. This is investigated in details via the asymmetric charge/discharge measurement and cyclic voltammogram (CV). The LTO/Li2C8H4O4 composite may have potential applications to be used as an anode material for the electric vehicle batteries, which is shallowly charged/discharged at ordinary times using the charge/discharge platform of LTO and fully charged/discharged at emergency to release the extra high capacity from Li2C8H4O4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.