Abstract

Most products have the potential to negatively impact the environment during all life-cycle stages. However, most environmental impact assessment methods focus on a single product life-cycle and on a specific life-cycle stage. Product design plays a significant role by determining traditional environmental impacts, such as embodied energy of materials, but also by influencing market adoption and production volumes. The main objective of this work is to develop a design optimization framework that estimates the environmental impact of design decisions (e.g. materials choice, etc.) across all life-cycle stages in consumer products. The methodology relies on quality function deployment (QFD), multi-attribute utility theory, non-linear mathematical programming, and life-cycle assessment tools to estimate the utility of the design options to the customer, the producer, and the environment. The proposed framework allows designers and other decision makers to select options that are environmentally sound and also aligned with the business objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.