Abstract
AbstractThe reaction mechanism of CH3O2and HS was systematically investigated by density functional theory (DFT). Six singlet pathways and seven triplet ones are located on the potential surface (PES). The result indicates that the main products are CH3O and HSO both on the singlet and triplet PES, different from the CH3O2+ OH reaction. Moreover, deformation density (ρdef) and atoms in molecules (AIM) analyses were carried out to further uncover the nature of chemical bonding evolution in the primary pathways. Furthermore, reaction rate constants were calculated in the temperature range from 200 to 1000 K using the transition state theory with the Wigner and Eckart tunneling corrections. Our results can shed light on the title reaction and offer instructions for analogous atmospheric reactions, as well as experimental research in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.