Abstract

We describe an accelerated density functional theory (DFT)-based computational strategy to determine trends in the decomposition of glycerol via elementary dehydrogenation, C-C, and C-O bond scission reactions on close-packed transition metal surfaces. Beginning with periodic DFT calculations on Pt(111), the thermochemistry of glycerol dehydrogenation on Pd(111), Rh(111), Cu(111) and Ni(111) is determined using a parameter-free, bond order-based scaling relationship. By combining the results with Brønsted-Evans-Polanyi (BEP) relationships to estimate elementary reaction barriers, free energy diagrams are developed on the respective metal surfaces, and trends concerning the relative selectivity and activity for C-C and C-O bond scission in glycerol on the various metals are obtained. The results are consistent with available theoretical and experimental literature and demonstrate that scaling relationships are capable of providing powerful insights into the catalytic chemistry of complex biomolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.