Abstract

Abstract Climate forecast skills are evaluated for surface temperature time series at grid points of a millennium control simulation from a state-of-the-art global circulation model [ECHAM5–Max Planck Institute Ocean Model (MPI-OM)]. First, climate predictability is diagnosed in terms of potentially predictable variance fractions and the fluctuation power-law exponent (using detrended fluctuation analysis). Long-term memory (LTM) with a fluctuation exponent (or Hurst exponent) close to 0.9 occurs mainly in high-latitude oceans, which are also characterized by high potential predictability. Next, explicit prediction experiments for various time steps are conducted on a gridpoint basis using an autocorrelation predictor. In regions with LTM, prediction skills are beyond that expected from red noise persistence—exceptions occur in some areas in the southern oceans and over the Northern Hemisphere continents. Extending the predictability analysis to the fully forced simulation shows a large improvement in prediction skills.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.