Abstract
The Kolmogorov–Arnold representation is a proven adequate replacement of a continuous multivariate function by a hierarchical structure of multiple functions of one variable. The proven existence of such representation inspired many researchers to search for a practical way of its construction, since such model answers the needs of machine learning. This article shows that the Kolmogorov–Arnold representation is not only a composition of functions but also a particular case of a tree of the discrete Urysohn operators. The article introduces new, quick and computationally stable algorithm for constructing of such Urysohn trees. Besides continuous multivariate functions, the suggested algorithm covers the cases with quantised inputs and combination of quantised and continuous inputs. The article also contains multiple results of testing of the suggested algorithm on publicly available datasets, used also by other researchers for benchmarking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.