Abstract
High-content image-based screening is widely used in Drug Discovery and Systems Biology. However, sample preparation artefacts may significantly deteriorate the quality of image-based screening assays. While detection and circumvention of such artefacts could be addressed using modern-day machine learning and deep learning algorithms, this is widely impeded by the lack of suitable datasets. To address this, here we present a purpose-created open dataset of high-content microscopy sample preparation artefact. It consists of high-content microscopy of laboratory dust titrated on fixed cell culture specimens imaged with fluorescence filters covering the complete spectral range. To ensure this dataset is suitable for supervised machine learning tasks like image classification or segmentation we propose rule-based annotation strategies on categorical and pixel levels. We demonstrate the applicability of our dataset for deep learning by training a convolutional-neural-network-based classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.