Abstract

The ability to meet increasingly personalized market demand in a short period of time and at a low cost can be regarded as a fundamental principle for industrialized countries’ competitive revival. The aim of Industry 4.0 is to resolve the long-standing conflict between the individuality of on-demand output and the savings realized through economies of scale. Significant progress has been established in the field of Industry 4.0 technologies, but there is still an open gap in the literature regarding methodologies for efficiently manage the available productive resources of a manufacturing system. The CONtrolled Work-In-Progress (CONWIP) production logic, proposed by Spearman et al., allows controlling the Work-In-Progress (WIP) in a production system while monitoring the throughput. However, an affordable estimation tool is still required to deal with the increased variability that enters the current production system. Taking advantage of recent advances in the field of machine learning, this paper contributes to the development of a performance estimation tool for a production line using a deep learning neural network. The results demonstrated that the proposed estimation tool can outperform the current best-known mathematical model by estimating the throughput of a CONWIP Flow-Shop production line with a given variability and WIP value set into the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.