Abstract
It is difficult for current salient object detection algorithms to reach a good balance performance between accuracy and efficiency. To solve this problem, a deep convolutional network for saliency object detection with balanced accuracy and high efficiency is produced. First, through replacing the traditional convolution with the decomposed convolution, the computational complexity is greatly reduced and the detection efficiency of the model is improved. Second, in order to make better use of the characteristics of different scales, sparse cross-layer connection structure and multi-scale fusion structure are adopted to improve the detection precision. A wide range of evaluations show that compared with the existing methods, the proposed algorithm achieves the leading performance in efficiency and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.