Abstract

We study a decomposition of a holomorphic vector bundle with connection which need not be endowed with any metrics, which is a generalization of an orthogonal decomposition of a Hermitian holomorphic vector bundle. We first derive several results on the induced connections, the second fundamental forms of subbundles and curvature forms of the connections. We next apply these results to a complex affine immersion. Especially, we give elementary self-contained proofs of the fundamental theorems for a complex affine immersion to a complex affine space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.