Abstract

A joint degree matrix (JDM) specifies the number of connections between nodes of given degrees in a graph, for all degree pairs, and uniquely determines the degree sequence of the graph. We consider the space of all balanced realizations of an arbitrary JDM, realizations in which the links between any two fixed-degree groups of nodes are placed as uniformly as possible. We prove that a swap Markov chain Monte Carlo algorithm in the space of all balanced realizations of an arbitrary graphical JDM mixes rapidly, i.e., the relaxation time of the chain is bounded from above by a polynomial in the number of nodes $n$. To prove fast mixing, we first prove a general factorization theorem similar to the Martin--Randall method for disjoint decompositions (partitions). This theorem can be used to bound from below the spectral gap with the help of fast mixing subchains within every partition and a bound on an auxiliary Markov chain between the partitions. Our proof of the general factorization theorem is direct and uses conductance based methods (Cheeger inequality).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.