Abstract

Focusing on every individual electric vehicle (EV) while optimally charging a significant number of EV units at the workplace is normally computationally burdensome. Such charging optimization requires not only a long runtime but also a large CPU memory due to numerous decision variables involved. This paper develops a new combined state of charge (SOC) based methodology to calculate day-ahead combined probabilistic charging loads for a large number of EV units. Here, several models are proposed to estimate different combined statistical parameters based on historical data. The proposed methodology determines the transition of the combined SOC distribution of EV units from one timeslot to the next using these estimated parameters. Various strategies of SOC-based charging (e.g., unfair and fair modes) are investigated to control EV loads. Numerical results show that the proposed SOC-based charging can reduce the number of decision variables significantly, and require less computational time and memory accordingly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.