Abstract

To reduce the production costs and breakdown risks in industrial manufacturing systems, condition-based maintenance has been actively pursued for prediction of equipment degradation and optimization of maintenance schedules. In this paper, a two-stage maintenance framework using data-driven techniques under two training types will be developed to predict the degradation status in industrial applications. The proposed framework consists of three main blocks, namely, Primary Maintenance Block (PMB), Secondary Maintenance Block (SMB), and degradation status determination block. As the popular methods with deterministic training, back-propagation Neural Network (NN) and evolvable NN are employed in PMB for the degradation prediction. Another two data-driven methods with probabilistic training, namely, restricted Boltzmann machine and deep belief network are applied in SMB as the backup of PMB to model non-stationary processes with the complicated underlying characteristics. Finally, the multiple regression forecasting is adopted in both blocks to check prediction accuracies. The effectiveness of our proposed two-stage maintenance framework is testified with extensive computation and experimental studies on an industrial case of the wafer fabrication plant in semiconductor manufactories, achieving up to 74.1% in testing accuracies for equipment degradation prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.