Abstract

We investigate data-driven approaches that extract powerful abstract representations directly from retinal images to provide a reliable referable diabetic retinopathy detector. We gradually build the solution based on convolutional neural networks, adding data augmentation, multi-resolution training, robust feature-extraction augmentation, and a patient-basis analysis, testing the effectiveness of each improvement. The proposed method achieved an area under the ROC curve of 98.2% (95% CI: 97.4-98.9%) under a strict cross-dataset protocol designed to test the ability to generalize - training on the Kaggle competition dataset and testing using the Messidor-2 dataset. With a 5 × 2-fold cross-validation protocol, similar results are achieved for Messidor-2 and DR2 datasets, reducing the classification error by over 44% when compared to most published studies in existing literature. Additional boost strategies can improve performance substantially, but it is important to evaluate whether the additional (computation- and implementation-) complexity of each improvement is worth its benefits. We also corroborate that novel families of data-driven methods are the state of the art for diabetic retinopathy screening. By learning powerful discriminative patterns directly from available training retinal images, it is possible to perform referral diagnostics without detecting individual lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.