Abstract

This paper investigates the kinematics of spin-rolling motion of rigid objects. This paper does not consider slipping but applies a Darboux frame to develop kinematics of spin-rolling motion, which occurs in a nonholonomic system. A new formulation of spin-rolling motion of the moving object is derived in terms of contravariant vectors, rolling velocity, and geometric invariants, including normal curvature, geodesic curvature, and geodesic torsion of the respective contact curve. The equation is represented with geometric invariants. It can be readily generalized to suit both arbitrary parametric surface and contact trajectory and can be differentiated to any order. Effect of the relative curvatures and torsion on spin-rolling kinematics is explicitly presented. The translation velocity of an arbitrary point on the moving object is also derived based on the Darboux frame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.