Abstract

Septicemia caused by Neisseria meningitidis is characterized by increasing levels of meningococcal lipopolysaccharide (Nm-LPS) and cytokine production in the blood. We have used an in vitro human whole-blood model of meningococcal septicemia to investigate the potential of CyP, a selective Toll-like receptor 4 (TLR4)-MD-2 antagonist derived from the cyanobacterium Oscillatoria planktothrix FP1, for reducing LPS-mediated cytokine production. CyP (> or = 1 microg/ml) inhibited the secretion of the proinflammatory cytokines tumor necrosis factor alpha, interleukin-1beta (IL-1beta), and IL-6 (by >90%) and chemokines IL-8 and monocyte chemoattractant protein 1 (by approximately 50%) induced by the treatment of blood with pure Nm-LPS, by isolated outer membranes, and after infection with live meningococci of different serogroups. In vitro studies with human dendritic cells and TLR4-transfected Jurkat cells demonstrated that CyP competitively inhibited Nm-LPS interactions with TLR4 and subsequent NF-kappaB activation. These data demonstrate that CyP is a potent antagonist of meningococcal LPS and could be considered a new adjunctive therapy for treating septicemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.