Abstract

An X-Ray powder diffraction study of ultra-dispersed polytetrafluoroethylene was carried out. As well as a regular polytetrafluoroethylene the ultra-dispersed form contents a high proportion of the crystalline phase. The X-ray diffraction pattern could be described with two-dimensional hexagonal unit cell [a=5.685(1) Å, symmetry group p6mm]. Structural modeling with a continuous electron density approach as well as with a discrete disordered atoms distribution was accomplished. The model was refined using the Rietveld method. The structure is characterized by a spiral arrangement of polymers (CF2-)n along the z-axis with complete mutual disordering by rotational displacement around z, as well as a partial molecular translation along the z-axis. Molecular disordering results in a systematic absence of reflections with 1≠0 and as a sequence in two-dimensional unit cell effect. The presence of complete rotational disordering distinguishes the ultra-dispersed form of polytetrafluoroethylene from the standard one (fluoroplast-4), where only partial disordering is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.