Abstract

Beurling's well known theorem connects the study of invariant subspaces to that of inner functions over the unit disc. In this paper, we will further explore this connection and, as a corollary of the result, show a one to one correspondence between the components of the invariant subspace lattice and the components of the space of inner functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.