Abstract

Proper waste disposal is a key towards sustainable development. Wastewater treatment is delineated by the application of efficient, economic and novel catalysts. Biochar is derived from the thermochemical conversion of biomass or any carbonaceous materials and is considered as one of the most eco-friendly substitute for activated carbon. Owing to its large surface area, porosity, crystallinity and active functional groups, the biochar-based catalysts has been extensively applied for the abatement of toxic pollutants from wastewater streams. While most of the reviews focus on the adsorptive properties of the biochar, this review critically analyses the recent development of biochar-based catalysts in the field of advanced oxidation processes (Fenton-like systems, photocatalytic and sonocatalytic systems). The presence of persistent free radicals and oxygen-containing functional groups renders biochar to act as catalyst. The mechanisms accompanying catalytic performance of biochar-based catalysts have also been reviewed. However, the research in this area is quite at an initial phase, and many advancements schemes are essential prior to scale-up and commercialization. Future researches should be devoted to more efficient and rigorous understanding of the structural properties of biochar to engineer the catalytic degradation of targeted pollutants in wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.