Abstract

We examined the efficacy of multiple biocides that are commonly used to control sulfate-reducing bacteria in fracturing fluids in shale natural gas formations. Seven biocides (tetrakis [hydroxymethyl] phosphonium sulfate, sodium hypochlorite, didecyldimethylammonium chloride, tri-n-butyl tetradecyl phosphonium chloride, glutaraldehyde, a glutaraldehyde and alkyldimethylbenzylammonium chloride blend, and a glutaraldehyde alkyldimethylethylbenzylammonium chloride blend) were examined. Minimum inhibitory concentrations (MIC) were determined using planktonic cells and biofilms of Desulfovibrio desulfuricans strain G20 and a sulfate-reducing enrichment culture that was obtained from a Barnett Shale frac pond. All biocides had higher MIC values for biofilms compared to planktonic cells from these two cultures. Higher concentrations of all biocides, except didecyldimethylammonium chloride, were required to kill planktonic cells of G20 that were exposed to humic acid. These results clearly indicate that biofilm formation by sulfate-reducing bacteria, as well as organic loading rates, negatively impact the efficacy of biocides. This work provides valuable information concerning the effects of biofilm formation and organic loading on biocide MIC values. These MIC data can be used as a guide for the control of microbial growth in future frac jobs, which should result in fewer incidences of sulfide production and corrosion in shale natural gas wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.