Abstract

Due to their high efficiency, specificity, and flexibility, programmable nucleases, such as those of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a (Cpf1) system, have greatly expanded the applicability of editing the genomes of various organisms. Genes from different gene families or genes with redundant functions in the same gene family can be examined by assembling multiple CRISPR RNAs (crRNAs) in a single vector. However, the activity and efficiency of CRISPR/Cas12a in the non-vascular plant Physcomitrella patens are largely unknown. Here, we demonstrate that LbCas12a together with its mature crRNA can target multiple loci simultaneously in P. patens with high efficiency via co-delivery of LbCas12a and a crRNA expression cassette in vivo. The mutation frequencies induced by CRISPR/LbCas12a at a single locus ranged from 26.5 to 100%, with diverse deletions being the most common type of mutation. Our method expands the repertoire of genome editing tools available for P. patens and facilitates the creation of loss-of-function mutants of multiple genes from different gene families.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.