Abstract
Cardiac simulators can assist in the diagnosis of heart disease and enhance human understanding of this leading cause of mortality. The coupling of multiphysics, such as electrophysiology and active–passive mechanics, in the simulation of the heart poses challenges in utilizing existing methodologies for real-time applications. The low efficiency of physically-based simulation is mostly caused by the need for electrical-stress conduction to use tiny time steps in order to prevent numerical instability. Additionally, the mechanical simulation experiences sluggish convergence when dealing with significant deformation and stiffness, and there are also concerns regarding volume inversion. We provide a coupling physics model that transforms the active–passive dynamics into multiphysics solving constraints, aiming at boosting the real-time efficiency of the cardiac electromechanical simulation. The multiphysics processes are initially divided into two levels: cell-level electrical stimulation and organ-level electrical-stress diffusion/conduction. This separation is achieved by employing operator splitting in combination with the quasi-steady-state method, which simplifies the system equations. Next, utilizing spatial discretization, we employ the matrix-free conjugate gradient approach to solve the electromechanical model, therefore improving the efficiency of the simulation. The experimental results illustrate that our simulation model is capable of replicating intricate cardiac physiological phenomena, including 3D spiral waves and rhythmic contractions. Moreover, our model achieves a significant advancement in real-time computation while maintaining a comparable level of accuracy to current methods. This improvement is advantageous for interactive medical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.