Abstract

Coulombic efficiency, as an important battery parameter, is highly related to the loss of lithium inventory, which is the dominant aging factor for lithium-ion batteries. In this paper, a semi-empirical model is derived from this relationship to capture the capacity degradation of lithium-ion batteries. The coulombic efficiency-based model effectively captures the convex degradation trend of lithium iron phosphate batteries and presents better fitting performance than the existing square-root-of-time model. To evaluate the proposed model, a battery cycle life experiment was designed, in which the subjects were continuously cycled under a federal urban driving schedule to simulate real-life battery usage. To perform online battery health estimation and prognostics, a particle filtering framework incorporating the proposed model was constructed to update the model parameters regularly with periodically measured data. Remaining useful life of the battery was then predicted by extrapolating the models with renewed parameters. The experimental results indicated that the proposed prognostic method can provide higher prediction accuracy than the existing square-root-of-time model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.