Abstract

A method to improve the dynamic response analysis of continuous classically damped linear system is proposed. As in fact usually, following a classical approach, a reduced number of eigenfunctions are accounted for and the response is evaluated by integrating the uncoupled differential equations of motion in modal space, neglecting the contribution of high frequency modes (truncation procedure). Here, starting from the given system, it is proposed to set up two differential equations governing the motion of two new continuous systems: the first one contains only the first m non-zero eigenvalues of the given system and the second one contains the remainder non-zero ~-m eigenvalues. By summing up the response of the two aforementioned systems it is proven that the global response is recovered. Then, the response of the first system is evaluated by classical dynamic methods (Duhamell integral or step-by-step integration procedures), while the particular solution of the second one is obtained in series form that is shown to converge quickly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.