Abstract

As the environment issue is put on the agenda, air pollution also concerns a lot. Nitrogen oxide (NOx) an is important factor which affects air pollution and is also the main gas emissions of the smoke and waste gas of FCC unit in petrochemical industry. It is important to accurately predict the NOx emission in advance for petrochemical industry to avoid air pollution incidents. In this paper, convolutional neural network (CNN) and long short-term memory (LSTM) are combined to predict the NOx emission in Fluid Catalytic Cracking unit (FCC unit). Convolutional-LSTM (CLSTM) is able to extract the spatial and temporal features which are essential information in the prediction of the NOx emission. The features in the factors of production which would affect the NOx emission are extracted by CNN which prepares time series data for LSTM. The LSTM layer is connected after CNN to model the irregular trends in time series. CNN, Multi-layer perception (MLP), rand forest (RF), support vector machine (SVM) and LSTM are implemented as baseline models. The results from the proposed CLSTM model showed better performance than all the baseline models. The mean absolute error and root mean square error for CLSTM were calculated with the values of 16.8267 and 23.7089 which are the lowest among all the models. The Pearson correlation coefficient and R2 for the proposed CLSTM model are calculated with the value of 0.9263, 0.8237 which are the highest among all the models. Furthermore, the residual graphs indicate the well matched performance between the observations and the predictions. The study provides a model reference for forecasting the NOx concentration emitted by FCC unit in petrochemical industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.