Abstract

In this paper, we analyze a scheme for the time-dependent variable density Navier-Stokes equations. The algorithm is implicit in time, and the space approximation is based on a low-order staggered non-conforming finite element, the so-called Rannacher-Turek element. The convection term in the momentum balance equation is discretized by a finite volume technique, in such a way that a solution obeys a discrete kinetic energy balance, and the mass balance is approximated by an upwind finite volume method. We first show that the scheme preserves the stability properties of the continuous problem (L ∞-estimate for the density, L ∞ (L 2)-and L 2 (H 1)-estimates for the velocity), which yields, by a topological degree technique, the existence of a solution. Then, invoking compactness arguments and passing to the limit in the scheme, we prove that any sequence of solutions (obtained with a sequence of discretizations the space and time step of which tend to zero) converges up to the extraction of a subsequence to a weak solution of the continuous problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.