Abstract

This paper presents a control architecture that substantially reduces current distortion in bridgeless boost power factor correction (PFC) rectifiers. In the proposed control architecture, the ac line voltage is sensed and the current reference is generated without rectification. This relieves the controller from having to deal with discontinuities around zero-crossing transitions, which eases requirements for the controller bandwidth and reduces distortion. Furthermore, a proportional-integral-squared (PI2) compensator is proposed to mitigate line current phase shift due to an input voltage feed-forward effect, which is particularly pronounced when a small boost inductance is employed. Very low distortion, near-ideal rectifier performance is experimentally verified on a 5 kW bridgeless boost PFC rectifier prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.