Abstract

A method is outlined whereby a given attenuation curve is approximated by the addition of a finite number of semi-infinite slopes, each of which in turn is closely approximated by the attenuation curve of a Butterworth function. These functions therefore constitute a set of approximation functions for impedance functions. The set is extended by the addition of Tschebyscheff functions, which seem more appropriate for the approximation of curves with filter properties. The method avoids most of the labor normally involved in the numerical solution of approximation problems and the calculation of impedance zeros and poles. It seems especially suited for cases of rather smooth attenuation curves extending over a wide range of frequency. A short indication is given of how to apply the same method to the approximation of resistance, reactance, and phase functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.