Abstract

BackgroundIn the literature-based discovery, considerable research has been done based on the ABC model developed by Swanson. ABC model hypothesizes that there is a meaningful relation between entity A extracted from document set 1 and entity C extracted from document set 2 through B entities that appear commonly in both document sets. The results of ABC model are relations among entity A, B, and C, which is referred as paths. A path allows for hypothesizing the relationship between entity A and entity C, or helps discover entity B as a new evidence for the relationship between entity A and entity C. The co-occurrence based approach of ABC model is a well-known approach to automatic hypothesis generation by creating various paths. However, the co-occurrence based ABC model has a limitation, in that biological context is not considered. It focuses only on matching of B entity which commonly appears in relation between two entities. Therefore, the paths extracted by the co-occurrence based ABC model tend to include a lot of irrelevant paths, meaning that expert verification is essential.MethodsIn order to overcome this limitation of the co-occurrence based ABC model, we propose a context-based approach to connecting one entity relation to another, modifying the ABC model using biological contexts. In this study, we defined four biological context elements: cell, drug, disease, and organism. Based on these biological context, we propose two extended ABC models: a context-based ABC model and a context-assignment-based ABC model. In order to measure the performance of the both proposed models, we examined the relevance of the B entities between the well-known relations “APOE–MAPT” as well as “FUS–TARDBP”. Each relation means interaction between neurodegenerative disease associated with proteins. The interaction between APOE and MAPT is known to play a crucial role in Alzheimer’s disease as APOE affects tau-mediated neurodegeneration. It has been shown that mutation in FUS and TARDBP are associated with amyotrophic lateral sclerosis(ALS), a motor neuron disease by leading to neuronal cell death. Using these two relations, we compared both of proposed models to co-occurrence based ABC model.ResultsThe precision of B entities by co-occurrence based ABC model was 27.1% for “APOE–MAPT” and 22.1% for “FUS–TARDBP”, respectively. In context-based ABC model, precision of extracted B entities was 71.4% for “APOE–MAPT”, and 77.9% for “FUS–TARDBP”. Context-assignment based ABC model achieved 89% and 97.5% precision for the two relations, respectively. Both proposed models achieved a higher precision than co-occurrence-based ABC model.

Highlights

  • With the development of modern biology, the number of publications in the biology literature has been increasing rapidly

  • 2) Mutations in c9orf72 and mapt are found in familial frontotemporal dementia [43]

  • An intermediate entity acts as a middleman between two other entity relations when applying the ABC model

Read more

Summary

Introduction

With the development of modern biology, the number of publications in the biology literature has been increasing rapidly. The result of ABC model is expressed as a path from entity A to entity C This path allows us to hypothesize the relationship between entity A and entity C, or to help discover entity B as a new evidence for the relationship between entity A and entity C. In the literature-based discovery, considerable research has been done based on the ABC model developed by Swanson. The co-occurrence based approach of ABC model is a well-known approach to automatic hypothesis generation by creating various paths. The co-occurrence based ABC model has a limitation, in that biological context is not considered It focuses only on matching of B entity which commonly appears in relation between two entities. The paths extracted by the cooccurrence based ABC model tend to include a lot of irrelevant paths, meaning that expert verification is essential

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.