Abstract

The ubiquitous and fine-grained features of WiFi signals make it promising for realizing contactless authentication. Existing methods, though yielding reasonably good performance in certain cases, are suffering from two major drawbacks: sensitivity to environmental dynamics and over-dependence on certain activities. Thus, the challenge of solving such issues is how to validate human identities under different environments, even with different activities. Toward this goal, in this article, we develop WiTL, a transfer learning–based contactless authentication system, which works by simultaneously detecting unique human features and removing the environment dynamics contained in the signal data under different environments. To correctly detect human features (i.e., human heights used in this article), we design a Height EStimation (HES) algorithm based on Angle of Arrival (AoA). Furthermore, a transfer learning technology combined with the Residual Network (ResNet) and the adversarial network is devised to extract activity features and learn environmental independent representations. Finally, experiments through multi-activities and under multi-scenes are conducted to validate the performance of WiTL. Compared with the state-of-the-art contactless authentication systems, WiTL achieves a great accuracy over 93% and 97% in multi-scenes and multi-activities identity recognition, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.