Abstract

A general contact stiffness model is proposed in this paper to study the contacts between rough surfaces of machined plane joints. The proposed model uses fractal geometry for surface topography description, elastic-plastic deformation of contacting asperities, and size-dependent contact stiffness of microcontacts, where the contact stiffness is derived from Hertz contact theory. Three cast iron specimens are produced from different machining methods (milling, grinding, and scraping), and their rough surface profiles are extracted. The structure function method was used to calculate each profile’s fractal dimension and scale coefficient. Both theoretical analysis and experimental results of contact stiffness are obtained for these specimens under different contact loads. The comparison between the theoretical contact stiffness and the experimental results at the interface indicates that the present fractal model for the contact stiffness is appropriate and the theoretical contact stiffness is consistent with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.