Abstract

A constitutive model is derived for the nonlinear viscoelastic response in polymers under isothermal loading at finite strains. The model is based on the concept of transient networks, where the rates of breakage and reformation of active chains are assumed to depend on the specific entropy. The stress-strain relations are developed for arbitrary active chains and for arbitrary rates of loss and reformation. For Gaussian chains and nonaging networks, the constitutive relations are simplified and reduced to quasi-linear Volterra equations with entropy-dependent kernels. In this case, the governing equations contain only one new adjustable parameter compared to conventional linear models in finite viscoelasticity. The constitutive model with an entropy-driven internal clock is applied to describe shear-thickening in polymeric solutions. By comparison of numerical results with experimental data, it is demonstrated that the model adequately predicts the shear-thickening phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.