Abstract

This paper presents a new Computational-RAM (C-RAM) architecture for real-time mesh-based video motion tracking. In Part 1, the motion estimation part of the proposed architecture is presented. Here in Part 2, a new C-RAM mesh-based motion compensation architecture is presented. The input data to the architecture is the mesh nodes motion vectors and the reference frame and the output data is the compensated (i.e., predicted) frame. The architecture uses the affine transformation for warping the deformed patches in the reference frame into the undeformed patches in the current frame. The architecture computes the affine parameters using a multiplication-free algorithm. The reference and current frames are stored in embedded S-RAMs generated with Virage™ Memory Compiler. The proposed motion compensation architecture has been prototyped, simulated and synthesized using the TSMC 0.18 μm CMOS technology. Using 100 MHz clock frequency, the proposed architecture processes one CIF video frame (i.e., 352×288 pixels) in 0.59 ms, which means it can process up to 1694 frames per second. The core area of the proposed motion compensation architecture is 28.04 mm2 and it consumes 31.15 mW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.