Abstract

This paper develops a computationally efficient method to bound the impact of multiple uncertain parameters in a dynamic load model. Load model trajectory sensitivity is first conducted on regional dynamics only (e.g., a large industrial load bus and its model for adequately representing the bus voltage dynamics) to identify critical and correlated load parameters. Systemwide trajectory sensitivity on the entire power system model is then evaluated for this reduced set of parameters, and finally, the impact of multiple uncertain parameters on the representation of power system dynamics is bounded. To reinforce this reasoning, we elaborate on the conceptual meaning of the load model trajectory sensitivity, its implication, and its applicability to the entire power grid analysis. This research also develops a fluctuation index of trajectory sensitivity to effectively rank and select the model parameters based on the impact of their perturbations on the system's dynamic performance. Case studies for the Korean power system demonstrate the validity and efficacy of the developed methods for adequately bounding the uncertainty impacts with reference to the comprehensive time-domain dynamic simulation approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.