Abstract

In the context of distributed target tracking based on a mobile peer-to-peer sensor network, the relative locations between the sensors are critical for their internode information exchange and fusion. For accurate coordinate calibration between the neighboring sensors, namely sensor localization, we propose a computationally efficient approach that minimizes the mismatch error between position estimates of the common targets yielded at neighbor sensors. This mismatch error is given by a Wasserstein-like distance that is a mean square error between two sets of position estimates which are associated efficiently via Hungarian assignment. Simulations have demonstrated that our approach, on the testbed of an arithmetic average fusion based probability hypothesis density filter, performs similar to the cutting-edge approach based on loopy belief propagation, but computes much faster and has much lower communication cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.