Abstract

To investigate the nature and mechanisms of decompression sickness (DCS), we developed a system for evaluating the success of decompression models in predicting DCS probability from empirical data. Model parameters were estimated using maximum likelihood techniques. Exact integrals of risk functions and tissue kinetics transition times were derived. Agreement with previously published results was excellent including: (a) maximum likelihood values within one log-likelihood unit of previous results and improvements by re-optimization; (b) mean predicted DCS incidents within 1.4% of observed DCS; and (c) time of DCS occurrence prediction. Alternative optimization and homogeneous parallel processing techniques yielded faster model optimization times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.