Abstract

Ab initio calculations were performed to examine the formation of mixed dimer and trimer aggregates between the lithium enolate of acetaldehyde (lithium vinyloxide, LiOV) and lithium chloride, lithium bromide, and lithium amides. Gas-phase calculations showed that in the absence of solvation effects, the mixed trimer 2LiOV.LiX is the most favored species. Solvation in ethereal solvents was modeled by a combination of specific coordination of dimethyl ether ligands on each lithium and "dielectric solvation" (DSE, dielectric solvation energies), immersion of each molecule in a cavity within a continuous dielectric having the dielectric constant of THF at room temperature. DSE is less important for aggregates (reduced dipoles or quadrupoles) than monomers (dipoles) and is also reduced for the coordinatively solvated species. Both solvation terms reduce the exothermicity of aggregation. In many cases, lithium salts that are three- rather than four-coordinate have significant populations at room temperature. The strongly basic lithium amides prefer mixed aggregates with weaker bases than homoaggregates. The computational results are consistent with the limited experimental data available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.