Abstract

In this paper, we introduce homophily to a game-theoretic model of collective action (e.g., protests) on Facebook and study the effect of homophily in individuals’ willingness to participate in collective action, i.e., their thresholds, on the emergence and spread of collective action. We use three different networks (a real Facebook network, an Erdős–Renyi random graph, and a scale-free network) and conduct computational experiments to study contagion dynamics (the size and the speed of diffusion) with respect to the level of homophily. We provide a series of parametric results on the time to achieve a specified contagion spread, on the spread of contagion at different times, and the probability of cascades. We demonstrate that these behaviors are highly nonlinear and nonmonotonic in homophily. Networks with randomly assigned thresholds result in both smaller and slower diffusion compared to the networks characterized by homophily and heterophily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.