Abstract
Skin cancer is considered one of the most common types of cancer in several countries and its incidence rate has increased in recent years. Computational methods have been developed to assist dermatologists in early diagnosis of skin cancer. Computational analysis of skin lesion images has become a challenging research area due to the difficulty in discerning some types of skin lesions. A novel computational approach is presented for extracting skin lesion features from images based on asymmetry, border, colour and texture analysis, in order to diagnose skin lesion types. The approach is based on an anisotropic diffusion filter, an active contour model without edges and a support vector machine. Experiments were performed regarding the segmentation and classification of pigmented skin lesions in macroscopic images, with the results obtained being very promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.