Abstract

We propose a compressible bag model, in which a nucleon bag responds microscopic thermal pressure of the other bags. The volume exclusion effect and the particle exchange type interaction ensure the saturation property of the nucleus at normal density and bring about the deconfinement transition in high density region. The critical values of chemical potential and baryon number density for nuclear/neutron matter are estimated. Our equation of state is applied to neutron stars, and shown to be consistent with the observed rotation periods of millisecond pulsars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.