Abstract
Wireless Sensor Networks (WSNs) have paved the way for a wide array of applications, forming the backbone of systems like smart cities. These systems support various functions, including healthcare, environmental monitoring, traffic management, and infrastructure monitoring. WSNs consist of multiple interconnected sensor nodes and a base station, creating a network whose performance is heavily influenced by the placement of sensor nodes. Proper deployment is crucial as it maximizes coverage and minimizes unnecessary energy consumption. Ensuring effective sensor node deployment for optimal coverage and energy efficiency remains a significant research gap in WSNs. This review article focuses on optimization strategies for WSN deployment, addressing key research questions related to coverage maximization and energy-efficient algorithms. A common limitation of existing single-objective algorithms is their focus on optimizing either coverage or energy efficiency, but not both. To address this, the article explores a dual-objective optimization approach, formulated as maximizing coverage Max ∑(i = 1) ^ N Ci and minimizing energy consumption Min ∑(i = 1) ^ N Ei for the sensor nodes, to balance both objectives. The review analyses recent algorithms for WSN deployment, evaluates their performance, and provides a comprehensive comparative analysis, offering directions for future research and making a unique contribution to the literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.